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Abstract

We are developing onboard planning and execution
technology to support the exploration and characteriza-
tion of geological features by autonomous rovers. In
order to generate high quality mission plans, an au-
tonomous rover must reason about the relative impor-
tance of the observations it can perform. There are a va-
riety of criteria that may contribute to the importance of
an observation such as how well the observation is ex-
pected to contribute to different scientific themes (e.g.
geology, atmospheric studies) or to engineering tasks.
In this paper we look at the scientific criteria of selecting
observations that improve the quality of the area cov-
ered by samples. Our approach makes use of a priori
information, if available, and allows scientists to mark
sub-regions of the area with relative priorities for ex-
ploration. We use an efficient algorithm for prioritizing
observations based on spatial coverage that allows the
system to update observation rankings as new informa-
tion is gained during execution.

Introduction

Our goal is to increase the onboard decision-making capabil-
ities of planetary exploration rovers. Currently, each morn-
ing of the Mars Exploration Rover (MER) mission the sci-
entists and engineers meet to discuss the observations they
would like the rover to perform. A subset of these obser-
vations are selected that are predicted to fit within the time
and resource (e.g. energy, onboard memory) constraints of
the rover. The engineering team spends the rest of the day
preparing the specific sequences that the rover will perform
to collect these observations and modeling the plan to ensure
it fits within resource constraints.

While the MER mission has been highly successful at ex-
ploring Mars, mission operations are manually intensive and
time consuming. And, in some cases, the sequences that are
uplinked do not always take full advantage of available op-
portunities. For example, if the rover receives more solar
array input than expected, it may have energy to preform
more science observations than what was uplinked.

By enabling rovers to perform onboard planning and
scheduling, we anticipate greatly reducing the time and ef-
fort required to perform mission operations while increasing

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the science that is acquired. The science and engineering
teams will be able to uplink observation requests that po-
tentially over-subscribe the rover’s resources. The rover will
use observation priorities and its current assessment of avail-
able resources to make decision bout which observations to
perform and when to perform them.

In order to make effective decisions about which obser-
vations to perform, the rover must reason about science pri-
orities. In previous work, we have used a single value to
indicate science priority and the rover attempted to generate
plans the maximized the sum of these priorities. In reality,
there are many different factors that determine the scientific
importance of an observation. For example, the MER mis-
sion organizes the science team into several themes: geol-
ogy, mineralogy, rock/soil properties, atmospheric and long
term planning,. Representatives from these themes evaluate
the quality of the day’s science plan.

In our current work, we are focusing on situations in
which the rover is exploring large geological features such
as craters, channels or a boundary between two different re-
gions. In these cases, another important factor in assessing
the quality of a plan is how the set of chosen observations
spatially cover the area of interest. Thus, one of the con-
siderations a rover should make when evaluating which ob-
servations should be included in a plan is how well the can-
didate observations will increase the spatial coverage of the
plan.

The overall goal of this technology is to enable the rover
to generate and execute plans that makes an appropriate bal-
ance between detailed study and broad coverage of a region.
In this paper we describe a technique that allows a rover to
evaluate the spatial coverage quality of a plan and gener-
ate plans that respect mission and resource constraints while
attempting to maximize the spatial coverage quality of the
plan. Our approach must also be efficient as the system may
have to re-evaluate the coverage quality of the plan and the
potential observations during plan execution.

Exploring Geological Features

We are developing onboard planning and scheduling tech-
nology to enable rovers to more effectively assist scientists
in exploring geological features. Figure 1 shows examples
of geological features on Mars illustrating the types of fea-
tures rovers may be directed to explore.
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Figure 1: Example geological features on Mars.

A scientific campaign for exploring a geological feature
will employ a variety of rover instruments for collecting data
about the region. For example, each Mars Exploration Rover
is equipped with remote sensing instruments including high-
resolution panoramic stereo cameras with a variety of fil-
ters (Pancam), navigational (Navcam) and hazard avoidance
(Hazcam) stereo cameras and a Mini Thermal Emissions
Spectrometer (Mini-TES). Each rover also has an arm with
a suite of instruments for close contact measurements: a mi-
croscopic imager (MI), two spectrometers and a rock abra-
sion tool (RAT) able to remove a few millimeters of a rock’s
surface.

When humans perform mission planning, there may be a
variety of reasons why a particular observation is selected in
a given plan. The observation may be selected for its scien-
tific merit. As discussed previously, this may be further bro-
ken down into the observation’s contribution to one or more
of the scientific themes (e.g. atmospheric, geology, ...). An
observation may provide benefit from an engineering per-
spective such as collecting data for long-term route planning
or assessing atmospheric dust content to facilitate better en-
ergy modeling. In addition, an observation may be selected
as it increases the area that has been covered by collected
data. In many cases, a single observation may contribute to
several of these criteria in various degrees.

Of course, the mission planning team must also take into

account the limited set of resources that the rovers have to
perform observations. The rovers are constrained by limited
energy, onboard data storage, downlink opportunities and
bandwidth and time to complete observations. Each obser-
vation places a different set of demands on these resources.
Some are very time consuming, such as long-term spectrom-
eter integrations, while others are memory intensive, such as
Pancam acquisitions. And some activities are constrained
to occur at certain periods of the day due to sun angle or
ambient temperature.

Each observation also varies in the amount of spatial cov-
erage that it affords. For example, Navcams and Hazcams
have a wide field of view while Pancams and Mini-TES have
a narrow field of view. A further challenge is that terrain
features, such as large rocks or hills, may occlude an ob-
servation thus limiting the area that it covers. The quality
of coverage afforded by an observation also degrades as a
function of distance from the rover.

Finally, for a given geological feature, scientists may be
more interested in certain sub-regions of that feature than
in others. Thus, observations should also be evaluated based
on the relative importance of the area for which they provide
coverage.

The current practice on planetary exploration missions

is to have the science and engineering teams select a sub-
set of observations that achieve an acceptable compromise



among these considerations and respect the team’s estimates
of the available resources for accomplishing these tasks. The
drawback to this approach is that the rover has extremely
limited ability to alter the plan if things do not go as pre-
dicted. For example, if tasks take longer than expected, then
later tasks may get dropped, even if they are deemed higher
priority than earlier tasks. Or, if the rover has extra resources
(e.g. more solar array energy than predicted) then it may
have been able to accomplish more observations than were
uplinked. Our objective is to enable rovers to reason about
science quality onboard so that they can appropriately adjust
the plan when state or environment information change.

CASPER Continuous Planning and
Optimization Framework

Our objective is to enable onboard planning software to rea-
son about the scientific quality of a plan so that it can make
more informed decisions about which observations to per-
form. This will enable the ground team to uplink a larger set
of observations and let the rover dynamically select among
them based on the scientific and engineering merit of the
resulting plan and the rover’s assessment of available re-
sources. During execution, the rover will modify the plan
based on the current estimate of its resources.

Our approach is implemented within the CASPER sys-
tem (Estlin et al. 2002; Chien er al. 2000). CASPER
employs a continuous planning technique where the plan-
ner continually evaluates the current plan and modifies it
when necessary based on new state and resource informa-
tion. Rather than consider planning a batch process, where
planning is performed once for a certain time period and set
of goals, the planner has a current goal set, a current rover
state, and state projections into the future for that plan. At
any time an incremental update to the goals or current state
may update the current plan. This update may be an unex-
pected event (such as a new science target) or a current read-
ing for a particular resource level (such as battery charge).
The planner is then responsible for maintaining a plan con-
sistent with the most current information.

A plan consists of a set of grounded (i.e., time-tagged)
activities that represent different rover actions and behav-
iors. Rover state in CASPER is modeled by a set of plan
timelines, which contain information on states, such as rover
position, and resources, such as energy. Timelines are cal-
culated by reasoning about activity effects and represent the
past, current and expected state of the rover over time. As
time progresses, the actual state of the rover drifts from the
state expected by the timelines, reflecting changes in the
world. If an update results in a problem, such as an ac-
tivity consuming more memory than expected and thereby
over-subscribing RAM, CASPER re-plans, using iterative
repair (Zweben et al. 1994), to address conflicts.

CASPER includes an optimization framework for rea-
soning about soft constraints such as reducing the distance
traversed by the rover and increasing the value of science
data collected. User-defined preferences are used to com-
pute plan quality based on how well the plan satisfies these
constraints. Optimization proceeds similar to iterative re-

pair. For each preference, an optimization heuristic gener-
ates modifications that could potentially improve the plan
score.

In order to apply CASPER to the described rover domain,
we performed a number of steps. These included devel-
oping a domain model for rover operations, developing a
control algorithm geared toward appropriately responding
to problems and opportunities, and integrating the processes
for plan optimization and repair. Figure 2 provides a high
level description of the control algorithm.

Input
A set of prioritized science goals from
Earth
Time constraints
Resource constraints
Preferences

Repeat:
Process any updates from Executive
Save current plan
For i = 1 to num_iterations
If there are conflicts
Select a conflict to work on
Select a repair strategy for this
conflict
Apply repair strategy
Else
Select an optimization preference
Select an optimization method for
this preference
Apply optimization method
Compute plan score
If current plan is best seen so far, save it
Reload plan with highest score

Figure 2: CASPER control algorithm for rover domain.

The algorithm takes as input a set of goals with associ-
ated science priorities, a set of time and resource constraints
and a set of user-defined preferences. The main loop of the
algorithm interleaves iterative repair and iterative optimiza-
tion to search for a conflict-free plan of high quality. The
loop begins by processing any updates on state and resource
timelines or on activity status. The current plan is saved. It
then enters a loop in which it attempts to improve the plan
by repairing conflicts or performing optimization steps.

If the plan has a conflict, CASPER performs a repair it-
eration. Otherwise, CASPER attempts to improve the score
by performing an iteration of optimize. If the score of the re-
sulting plan is higher than the previously saved plan (based
on a set of user-defined preferences), than the current plan is
recorded.

The primary method used to enable the system to reason
about spatial coverage of science observations was to de-
velop an appropriate preference. The preference includes a
means to score a plan based on the spatial coverage quality
afforded by the plan. If the spatial coverage preference is
selected to improve the plan score, the optimization method
is to satisfy one of the requested observations that is not yet



in the plan that will provide the biggest improvement to the
coverage quality of the plan.

The next section provides details on how the spatial cov-
erage quality of a plan is computed and how observations
are selected to improve this score.

Spatial Coverage Preference
Figure 3) provides an example region of terrain that we want
a rover to explore and Figure 4 shows an example set of
observations that are under consideration for the plan.

Figure 3: Digital elevation map of the an example terrain to
be explored.
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Figure 4: Set of observations.

With limited available resources, it is unlikely that the
rover will be able to perform all of these observations. As
discussed previously, there are many considerations for de-
termining which subset of observations should be included
in a plan. The objective of this work is to develop a prefer-
ence to encourage spatial coverage to be one of the consid-
erations during plan generation and modification.

In this section we describe our approach to representing
and reasoning about the spatial coverage quality of a plan.
We begin by describing how we represent a priori informa-
tion about the terrain to be explored along with scientists’
priorities indicating the relative importance of various sub-
regions. We then describe how we model the coverage qual-
ity afforded by a given observation. These observation mod-
els are used to track the spatial coverage quality of plan, tak-
ing into account those observations that have already been
executed and those that are scheduled to execute in the fu-
ture. When resources and plan space is available, all of this
information is then used to select which observations to add
to the plan in an attempt to optimize the spatial coverage of
the plan. Conversely, when resources are over-subscribed
and observations must be shed, to select an observation that
will make the smallest impact on the spatial coverage of the
plan if it were to be removed.

Terrain and Terrain Priority Representation

Knowledge of terrain will enable the system to make bet-
ter predictions about the coverage of observations as it will
know about occlusions from terrain features such as rocks or
hills.

Scientists typically have a variety of a priori information
that is used to identify candidate observations that can con-
tribute to the initial terrain map. Images from previous ob-
servations, such as NAVCAM and PANCAM observations,
are the primary source of information for selecting new tar-
gets. In addition, images from orbiting spacecraft as well
as images taken during the spacecraft’s descent, provide a
coarse view of the geological features.

We represent a priori knowledge of the terrain to be ex-
plored as a digital elevation map where each pixel represents
the height of the terrain at that point. Figure 3 shows an ex-
ample terrain map.

The resolution of the map has a direct impact on the space
and time complexity of the algorithm. It is not critical that
we compute a highly accurate score for the amount of terrain
covered by a given observation. Rather, it is important that
the relative scores of different observations be correctly as-
sessed. Thus, we convert the input terrain map into a coarser
resolution such as the one in Figure 5. The resolution of
the terrain map is a parameter that can be tuned to make a
trade-off between accuracy of coverage quality predictions
and computational complexity of the system.

Figure 5: Lower resolution version of terrain in Figure 3.

It is also important to note that the approach does not re-
quire that a priori knowledge be complete or accurate. Miss-
ing or incorrect data in the terrain map will result in incorrect
estimates of the spatial coverage that an observation will af-
ford which, in turn, could result in lower quality plans. How-
ever, as observations are performed the terrain map will be
updated and the coverage quality of upcoming observations
will be re-assessed.

In addition to the terrain map, the system will take as input
a matrix of weights that define the relative scientific impor-
tance of sub-regions of the terrain map. The matrix is the
same size and dimensions as the input terrain matrix with
each cell containing a value between 0 (least important) and
1 (most important).

Modeling Observations

In order to evaluate the coverage quality of a plan, it is nec-
essary to compute the coverage afforded by a given observa-



tion. Figure 6 illustrates the key steps in this computation.

(a) compute observation visibility
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Figure 6: Modeling observation coverage quality.

The first step is to determine which cells of the terrain are
visible from the location of the observation. The location
of the observation, the range of the instrument and the el-
evation of the terrain determine which cells. For each cell
within range of the observation’s location (as determined by
the range value for the instrument) we perform an intersec-
tion test between the terrain and a line from the location of
the instrument to the cell using the intersection test (Shapira
1990).

Once it has been determined that a cell is visible to an
observation, we compute the coverage quality score which
represents how well that cell is covered by the observation.
A score of 0 indicates that the cell is not covered at all by
this observation (e.g. it is occluded by the rover body). A
score of 1 represents “perfect” coverage, in the sense that
another observation of the cell would not improve upon the
cell’s coverage.

This computation of the coverage quality score will vary
based on the type of instrument used. In general, cells fur-
ther from the origin of the observation are not covered as
well as those closer in. Figure 6 (b) illustrates the coverage
quality model for a panoramic image observation. Let d be
the distance of the visible cell from the origin of the obser-
vation. The radius r( represents the diameter of the rover
body. If d < rq then the cell is occluded by the rover body
and not covered by this observation. Cells that lie between
ro and ry are within the primary range of this instrument.
Coverage is high for cells close to 7o but drops off moving
out toward r1.

The range between r; and ry is used to encourage
“spreading out” of observations. The idea is that, all else be-
ing equal, one might prefer to have observations spread out
across the terrain rather than clustered in a small region. The
extend to which spreading out is encouraged can be tuned by
increasing or decreasing 7.

Finally, the coverage of the cell is multiplied by the
weight in the scientific priority matrix resulting in the cell’s
spatial coverage quality provided by this observation.

Tracking Coverage Quality

Now that we have a way of computing the spatial coverage
for a given observation, the next step is to keep track of the
spatial coverage provided by a set of observations. We do
this by recording the spatial coverage quality afforded by
the observations into a coverage quality matrix. A coverage
quality matrix is the same dimension and resolution as our
terrain matrix with each cell containing a coverage quality
value. If multiple observations cover the same cell in the
coverage quality matrix we record the max coverage qual-
ity score afforded by these observations. Figure 7 shows
an example coverage quality matrix reflecting the coverage
quality for a set of observations.

W 0 (no coverage)  [] 255 (perfect coverage)

(a) coverage quality for a set of observations

Figure 7: Example coverage quality for a set of observations.

We maintain two separate coverage qualities matrices. We
keep track of an Executed Coverage Quality Matrix that
keeps track of the coverage quality afforded by the obser-
vations that have already executed. The second matrix is the
Pending Coverage Quality Matrix and includes the cover-
age quality from the executed observations and the predicted
coverage quality that will be obtained after the pending ob-
servations in the plan have been executed. As will be seen,
maintaining these matrices will improve efficiency when the
terrain map is updated and when selecting observations to
add to or remove from the plan.

Each coverage quality matrix has a score which is equal
to the sum of the coverage quality of each of its cells.

Ranking Observations

We rank observations with respect to how well they are ex-
pected to improve the coverage quality of the plan. We main-
tain two rankings, one for the requested observations, those



that are not yet in the plan, and the pending observations,
those that are in the plan but have not yet executed.

When selecting a requested observation to add to the plan
we select the highest ranked observation from the requested
observations ranking. If we must shed a pending observation
to resolve a conflict, we select the lowest observation from
the pending observations rankings.

In actuality, rather than always selecting the highest ob-
servation to add (or lowest when deleting( we perform a
probabilistic selection from the ranked list of observations
with a probability of selecting a particular observation pro-
portional to the coverage quality it is expected to contribute
to the plan. This probabilistic selection enables the system to
avoid getting stuck trying to satisfy an observation for which
there are insufficient resources to perform.

Because the coverage afforded by observations may over-
lap, The coverage quality an observation will contribute to
a plan depends in part on the other observation already in
the plan. Thus, when we rank the requested observations we
do so relative to the pending coverage quality matrix. Sim-
ilarly, the coverage quality contribution of a pending obser-
vation depends on the observations that have already been
executed. Therefore, the pending observations are ranked
relative to the executed coverage quality matrix.

Figure 8 shows the algorithm used to rank a set of obser-
vation relative to a coverage quality matrix. A contribution
score is computed for each observation which is equal to
how much the score of the coverage quality matrix would
increase if this observation were added.

Input
Unranked Observations
Initial Coverage Quality Matrix

For each observation in Unranked Observa-

tions
Observation’s contribution score = how
much the score of the coverage quality ma-
trix would improve if this observation were
included

Sort observations based on contribution score

Figure 8: Ranking a set of observations relative to a cover-
age quality matrix.

Note that the algorithm in Figure 8 ranks only the single
next observation to add (or remove) and does not indicate
which order the remaining observations should be added (or
removed). Instead, we use an iterative approach since, given
the iterative nature of CASPER’s repair and optimization
loop, we will add or remove activities one at a time.

This iterative approach represents a greedy algorithm for
selecting observations to add and remove and does not guar-
antee an optimal solution except in the case where the ob-
servations do not overlap. We have chosen not to attempt an
optimal solution for three main reasons. First, observations
are selected for a variety of reasons, not just spatial cover-
age. Thus, we cannot count on the spatial coverage ranking

being honored when observations are added and removed.
Second, because we will have to re-rank observations dur-
ing execution (when observations are added and removed or
when the terrain map is updated) we want a fast computa-
tion. Finally, we expect that observations will not overlap
significantly and thus the greedy approach will not be far
from optimal.

Updating Spatial Coverage During Execution

During the course of executing the plan, the system will need
to update its rankings. Through the collection of observa-
tions, we will be collecting new information about the ter-
rain being explored. We can update the terrain map when
this happens. Doing so will improve the accuracy of the
coverage quality predictions. However, when the terrain is
updated we will need to re-compute the coverage quality af-
forded by each of the observations and re-compute our rank-
ings.

We must also re-compute rankings when observations are
added to or removed from the plan since the contribution
score of an observation depends on the order in which it is
added to the plan.

Related Work

The spatial coverage problem we are solving is similar to
a classic computational geometry problem called the Art
Gallery Problem (O’Rourke 1987). Given a polygon, repre-
senting the floor plan of an art gallery, the problem is to se-
lect the minimum number of locations to place guards such
that every point in the polygon is in view of at least one
guard. It is assumed that guards can see in all directions
and can see out to infinity unless an edge of the polygon ob-
structs its view. This has been show to be NP-Hard, but a
popular approximation runs in time O(nlogn. The approx-
imation triangulates the polygon and then performs three-
coloring on the resulting vertices. Guards are posted at the
vertices that were colored by the minimum color class (the
color class that was used the least amount of times to color
vertices).

While similar, there are significant difference between the
Art Gallery Problem and the problem we wish to solve.
Most significant is that the Art Gallery Problem is restricted
to 2D while we are modeling and selecting observations in
3D. The triangulation approximation described above does
not scale to the 3D case. Furthermore, it is unrealistic to
model observations the way guards are modeled. Some ob-
servations cannot see in all directions and the quality of
the observation is not constant with respect to the distance
of a point from the origin of the observation. Finally, the
Art Gallery Problem does not consider the costs of posting
guards.

The ROPE (Rank and Overlap Elimination) system se-
lects locations for video cameras for visual surveillance of
large 3D open spaces (Rana 2005). ROPE discretizes the
area into cells and then uses a greedy algorithm to select
camera locations by first placing a camera in the cell from
which the largest number of other cells are visible. The se-
lected cell and the visible cells are removed from the area



and the process is repeated until no cells remain. This greedy
approach is similar to the approach we take in ranking obser-
vations. However, like the Art Gallery Problem, ROPE does
not model the quality of coverage and it does not consider
cost.

The swath coverage problem for orbital satellites is simi-
lar to the spatial coverage problem addressed in this paper. A
satellite collects images as it orbits and may acquire images
of the same location on subsequent orbits. The problem is to
select which images to downlink to maximize science value
while respecting onboard storage and downlink capacities.
Knight presents an optimal solution using depth first branch
and bound and a network flow formulation for a heuristic
reward estimator (Knight & Smith 2005). The ASTER sys-
tem uses a greedy approach for selecting images similar to
ROPE (Muraoka et al. 1998). Both approaches take into
account resource cost of observations and can take into ac-
count quality of coverage. The heuristic used in Knight as-
sumes that the reward for an observation scales with its cost.
This is not necessarily the case for rovers where the cost of
an observation may vary independent of the reward due to
many factors such as distance to the observation and terrain
conditions. Our greedy algorithm is essentially the same as
that used in ASTER. The main difference in our work is the
modeling of instrument observations and the incorporation
of this work into surface operations and other optimization
preferences.

Conclusions

We have presented a set of algorithms that enable a rover to
compute the spatial coverage quality of a plan and to rank
candidate observations by how well they are expected to im-
prove coverage quality. Using this technique, a rover is bet-
ter able to assist in the exploration of geological features by
generating high quality operations sequences that take into
account spatial coverage along with other science consider-
ations. We have currently implemented and tested these al-
gorithms and have tested them in a stand-alone mode. We
are in the process of integrating the preferences into our
rover planning and execution system. In future work, we
will focus on techniques for combining multiple preferences
functions so that the system can more effectively trade-off
science and engineering objectives when generating and ex-
ecuting plans.
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